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Abstract. A general solution to the complex Monge–Ampére equation in a space of arbitrary
dimensions is constructed.

1. Introduction

The homogeneous complex Monge–Ampére equation (HCM–A) in n-dimensional space has
the form:
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∣∣∣∣∣∣∣∣∣∣
= 0. (1)

Its real form, which arises from (1) under the assumption that the solution depends only upon
n arguments, xi = yi + ȳi , has been found before by different methods [1,2], but to the best of
our knowledge the general solution of the HCM–A equation (1) is still wanting.

The aim of the present paper is to fill this gap by using the method of our previous paper [2]
(the solution of the real HM–A equation in a space of arbitrary dimension) to obtain and present
the general exact solution of the complex version of this equation in implicit form.

In order to understand the nature of our solution all that is necessary is a knowledge of the
rules of differentiation of implicit functions. The Monge–Ampére equation is an equation of
second order and thus its general solution (in the Cauchy–Kovalevsky sense) must be dependent
upon two arbitrary functions each of (2n− 1)-independent arguments. A solution of exactly
this form is presented in the theorem found in the next section. All questions about existence
of singular solutions (shock waves for instance) lie outside the framework of this paper.

2. General case of arbitrary n

Theorem. Let the set of functions ψα(y; ȳ) be determined implicitly by the following set of
equations, the number of which coincides with the number of functions ψ:

�ψβ (ψ; y) = −�̄ψβ (ψ; ȳ) (2)
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where�, �̄are arbitrary differentiable functions of their (2n−1)arguments (yi, ψα), (ȳi , ψα),
1 � i � n, 1 � α � (n−1) and the subscript denotes differentiation with respect toψβ . Then,
selfconsistent derivatives of the function φ satisfying the HCM–A equation in n dimensions
are determined with the help of the formulae

φy = �y φȳ = �̄ȳ . (3)

Equation (2) implicitly defines (n− 1) functions ψα as functions of 2n arguments y, ȳ.
Now we would like to prove that derivatives of the function φ determined with the help of

formulae (2) are selfconsistent in the sense of equality of the second mixed partial derivatives
with respect to all independent arguments involved.

Let us first check the conditions of selfconsistency of the second mixed derivatives with the
same (barred, unbarred) indices. We consequently have (for two arbitrary coordinates (y1, y2))

(φy1)y2 = �y1,y2 +
∑

�y1,ψνψ
ν
y2

= �y1,y2 +
∑

�y1,ψ (�ψ,ψ + �̄ψ,ψ)
−1�y2,ψ .

In writing the last equality we have used the explicit expressions for derivatives of the functions
ψ , and the vector component superscript on ψ has been suppressed in the final expression.
These derivatives follow directly from equation (2) differentiated with respect to the arguments
y(ȳ):

ψy = −(�ψ,ψ + �̄ψ,ψ)
−1�ψ,y

ψȳ = −(�ψ,ψ + �̄ψ,ψ)
−1�̄ψ,ȳ .

The matrix (�ψ,ψ + �̄ψ,ψ)
−1 is obviously symmetric, so the last expression is symmetric

with respect to permutation of the indices (1, 2). Thus second mixed derivatives with indices
of the same kind are selfconsistent.

Now let us calculate the mixed derivatives with indices of different kinds:

(φyi )ȳk = −
∑

�yi,ψνψ
ν
ȳk

=
∑

�yi,ψ(�ψ,ψ + �̄ψ,ψ)
−1�̄ȳk,ψ . (4)

The result of calculation in the opposite order gives exactly the same result also as a corollary
of the symmetry of the same matrix.

Thus we have proved that derivatives of the φ function are determined in a selfconsistent
manner and can be reconstructed by integration of the differential one-form dφ as a line integral;

φ =
∑
i

( ∫
dyi�yi +

∫
dȳi�̄ȳi

)
.

It is seen from the explicit expression for second derivatives of the φ function φyi,ȳk ,
calculated above, that the condition of linear dependence between its rows is equivalent to the
equality

n∑
i=1

di�yi ,ψ = 0.

We assume that the determinant of one among the n (n−1)×(n−1)matricesQψα,y is different
from zero (otherwise there exists a functional dependence among the (n − 1) functions ψα);
then the last equality is equivalent to a linear system of algebraic equations:

Qψ,yn +
n−1∑
ν=1

dνQψ,yν = 0

from which all coefficients of the linear dependence are uniquely determined.
Thus we have proved that linear dependence occurs among n rows of the matrix φyi,ȳk ,

so its determinant is equal to zero and the function φ is determined by the conditions of the
theorem to satisfy the HCM–A equation in the n-dimensional case.
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We emphasize once more that this solution is determined by two arbitrary functions�, �̄
each depending on (2n − 1)-independent arguments. In this sense we say that the solution
constructed is the general one in the Cauchy–Kovalevsky sense.

2.1. Example

It is evident that a large class of explicit solutions to (1) can be constructed as follows. Let

φ =
k=n−1∑
k=1

f k(y)f̄ k(ȳ) (5)

where the (n−1) arbitrary functionsf k(y) depend only upon the variables yj , and the functions
f̄ k(ȳ) similarly depend only upon the barred variables. Then it is straightforward to verify
that this is a solution to (1). How does this fit with our construction? If one takes

�(ψk, y) =
k=n−1∑
k=1

(ψk − f k(y))2 �̄(ψk, y) =
k=n−1∑
k=1

(ψk − f̄ k(y))2

and follows the procedure described here then solution (5) is recovered.

3. Outlook

The main result of this paper is presented in the theorem in section 2, giving the possibility
of finding the general solution of the HCM–A equation (1) in implicit form. We especially
emphasize that we cannot say that we have found all solutions of this equation but only those in
which the number of arbitrary functions and their functional dependence is sufficient to resolve
the statement of the problem of solution of the HM–A equation in terms of initial data of the
Cauchy–Kovalevsky type. This solution is the most nondegenerate and excludes solutions of
the shock-wave type. Similar results have been found for the complex Bateman equation [3].
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